Келісемін:	Бекітемін:
Согласовано:	Утверждаю:
Руководитель ГУ «Отдел образования	Директор КГУ «Общеобразоваетельная школа №1
по Зерендинскому району	п.Алексеевка по Зерендинскому району
управления образования Акмолинской области» Кенжеболатова Л III	управления образования Акмолинской области» Податитура Под

УЧЕБНАЯ ПРОГРАММА КРУЖКА IT КРУЖОК В 5 КЛАССЕ HA TEMY: «LEGO® MINDSTORMS® EV3»

УЧИТЕЛЬ: ШАЛАШУН К.В.

2025-2026 учебный год

Введение

Во исполнение поручений Главы государства Н.А. Назарбаева, озвученных в Послании к народу Казахстана «Новые возможности в условиях четвертой промышленной революции» от 10 января 2018 года и в реализацию Государственных программ «Цифровой Казахстан», «Развитие образования и науки Республики Казахстан на 2016-2019 годы», утвержденных Постановлением Правительства РК №827 от 12.12.2017 года и Указом Президента Республики Казахстан от 1 марта 2016 года № 205 соответственно, проектной группой Портфолио офиса партии «Нұр Отан» в июле-августе 2018 г. была подготовлена Концепция партийного проекта (далее Проект) «Создание бесплатных IT-классов для детей» (далее - Концепция), а также разработаны Методические рекомендации и Дорожная карта по ее реализации. В соответствии с вышеуказанными документами во всех регионах страны, в том числе в Акмолинской области, была проведена большая подготовительная организационно-содержательная работа: определена целевая группа (учащиеся школ в возрасте от 8-ми до 16-ти лет); разработаны обучающие программы базового и продвинутого уровня; проведено обучение учителей информатики на областном и районном уровнях; сформированы учебные группы в соответствии с уровнем подготовленности обучающихся; рассчитаны и выделены необходимые объемы финансовых средств из областных бюджетов. Практика реализации Проекта, по оценкам администраций школ, методистов, учителей информатики, показала полезность и эффективность работы в данном направлении в части повышения заинтересованности и расширения знаний учащихся школ в вопросах программирования, робототехники, 3D моделирования. Однако, в связи с бурным развитием информационно-коммуникационной отрасли, в том числе разработкой новых технологий и оборудования, а также с увеличением количества школ-лицеев, школ с лицейскими классами и связанным с этим процессом расширением возможностей педагогических коллективов возникла необходимость пересмотра и доработки обучающих программ. С учетом вышеуказанного, по инициативе консультанта Акмолинского регионального центра новых технологий в образовании, Почетного работника образования Республики Казахстан Ибраева М.У., управлением образования Акмолинской области был издан приказ от 17.03.2023г. №113 «О создании рабочей группы по разработке учебной программы кружка «Бесплатные IT-классы для детей». В состав рабочей группы вошли сотрудники Акмолинского регионального центра новых технологий в образовании, областного методического центра, ведущие учителя информатики школ области под общим руководством заместителя директора Акмолинского регионального центра новых технологий в образовании Кульниязова Р.С. В период с 20 марта по 28 апреля 2023 года рабочей группой проведено 4 заседания, на которых обсуждались проекты обучающих программ, разработанных соответствующими подгруппами. При разработке программ соблюдался дифференцированный подход к содержанию и объему учебного материала, в результате применения такого подхода разработаны три варианта программы: 1 час в неделю для общеобразовательных школ, 2 часа в неделю для 1-11 классов общеобразовательных школ, 4 часа в неделю для школ-лицеев и других школ повышенного уровня. Программы и одобрены на заседаниях методического совета Акмолинского регионального центра новых технологий в образовании (протокол от 29 июня №2), рекомендуются для использования на факультативных и кружковых занятиях школ всех типов.

Программная и нормативно-правовая база (с изменениями и дополнениями):

- 1. Послание Президента Республики Казахстан Н.А. Назарбаева народу Казахстана «Новые возможности развития в условиях четвертой промышленной революции» от 10 января 2018 года.
- 2. Закон РК «Об информатизации» от 24 ноября 2015 года № 418-V
- 3. Государственная программа «Цифровой Казахстан», утвержденная Постановлением Правительства РК от 12.12.2017 года №827.
- 4. Государственная программа «Развитие образования и науки Республики Казахстан на 2016 2019 годы», утвержденная Указом Президента Республики Казахстан от 1 марта 2016 года № 205.
- 5. Постановление Правительства № 77 от 30 января 2008 г. «Об утверждении типовых штатов работников государственных организаций образования и перечня должностей педагогических работников и приравненных к ним лиц»
- 6. Приказ Министра образования и науки РК № 50 от 22 февраля 2013г. «Об утверждении номенклатуры видов организаций образования»
- 7. Приказ Министра образования и науки РК «Об утверждении типовых учебных планов начального, основного, общего среднего образования Республики Казахстан» от 8 ноября 2012 г. № 500.

Пояснительная записка

разработана В Государственными Учебная программа соответствии c общеобязательными стандартами дошкольного воспитания и обучения, начального, основного среднего и общего среднего, технического и профессионального, послесреднего образования, утвержденными приказом Министра просвещения Республики Казахстан от 3 августа 2022 года № 348 «Об утверждении государственных общеобязательных стандартов дошкольного воспитания и обучения, начального, основного среднего и общего среднего, технического и профессионального, послесреднего образования» (зарегистрирован в Реестре государственной регистрации нормативных правовых актов под № 29031). Учебная программа «Бесплатные IT - классы» реализуется на дополнительных занятиях (кружковые, элективные) для учащихся 1- 11 классах общеобразовательных школ и школ повышенного уровня. Основными, характерными при реализации данной программы формами являются комбинированные занятия. Занятия состоят из теоретической и практической частей, причем большее количество времени занимает практическая часть. И В теоретической части рассматриваются основные понятия инструкции. В практической части предлагаются практические работы, направленные на отработку основных алгоритмических конструкций, на развитие логического мышления, на реализацию математических способностей обучающихся в ходе решения задач и составления программ. Практическая часть предполагает использование учебного компьютерного класса, информационнокоммуникационных технологий, цифровых плтформ, работа в Интернете, защита копьютерной безопасности и т.д. Знания, полученные при изучении курса «Бесплатные IT - классы для детей», учащиеся могут использовать при создании собственных программ, разработки проектов по робототехнике, мобильных приложений по определенной тематике, для решения задач из различных областей знаний - информатике, математике, физике, химии, биологии и др. Знания и умения, приобретенные в результате освоения данного курса, являются фундаментом для дальнейшего совершенствования в области инновационных, цифровых и информационных технологий.

Утверждаю: Директор школы КГУ «ОШ №1 п. Алексеевка»

Шалашун Л.А.

УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

No	№п/п	Тема	Сроки	Кор-ка
		ВЕДЕНИЕ И ОСНОВЫ РАБОТЫ С LEGO		
1.	1.	Изучение основ робототехники; объяснение, что такое	03.09	
		«робот»; рассмотрение разновидностей роботов и		
		области их применения. Знакомство с историей		
		развития, с содержимым комплекта LEGO:		
		электронные компоненты, шестеренки, колеса. Оси,		
		конструкционные элементы.		
2.	2.	Названия и принципы крепления деталей. Создание	10.09	
		трехмерных моделей конструкции из EV3. 1 1 И		
PA3	дел II. (ОСНОВЫ КОНСТРУИРОВАНИЯ		•
3.	3.	Изучение механизмов. Виды механической передачи.	17.09	
		Передаточное отношение. Практическое задание:		
		конструирование редуктора с заданным передаточным		
		отношением.		
4.	4.	Практическое задание: конструирование	24.09	
		одномоторную тележку и управление динамо-		
		машиной. Перевод в полный привод.		
PA3	дел III.	ОСНОВЫ УПРАВЛЕНИЯ РОБОТАМИ		•
5.	5.	Установка ПО, знакомство со средой	01.10	
		программирования LEGO. Правила и поле для		
		проведения соревнования. Участие в учебных		
		соревнованиях «СУМО».		
6.	6.	Сборка двухмоторного базового робота и шагающего	08.10	
		робота.		
7.	7.	Изучение блока «Рулевое управление» и его настроек	15.10	
		изучение механизмов поворота робота на различные 1		
		1 углы, написание программы для поворота робота на		
		заданные градусы.		
		ПОИСК ВЫХОДА ИЗ ЛАБИРИНТА		
8.	8.	Алгоритм прохождения лабиринта. Программа с	22.10	
		блоком действия независимое управления моторами		
		для участия в учебных соревнованиях.		
9.	9.	Исследование принципа работы датчика «Касания».	05.11	
		Изучение программных блоков датчик «Касания»,		
		«Ожидание».		
10.	10.	Дополнение базового робота. Программа с блоками	12.11	
		«Ожидание». Датчик «Касания» для участия в учебных		
		соревнованиях «Лабиринт»		
11.	11.	Изучение программного блока «Цикл». Программа с	19.11	
		блоками «Ожидание», датчик Касания для участия в		
		учебных соревнованиях «Лабиринт»		
12.	12.	Правило и алгоритм прохождения лабиринта по	26.11	
		правилу правой руки		

13.	13.	Изучение и использование в программировании блоков Экран, Звук, Индикатор состояния модуля.	03.12	
14.	14.	Изучение и использование в программировании блоков	10.12	
14.	14.	Экран, Звук, Индикатор состояния модуля.	10.12	
15.	15.	Сборка и программирование по инструкции пульта	17.12	
10.	10.	управления на двух датчика «Касания». Возможности	17.12	
		параллельного программирования.		
16.	16.	Дополнение и усовершенствование робота - сумоиста.	24.12	
10.	10.	Программа и участие в учебном соревновании «Сумо	22	
		на пультах управления»		
17.	17.	Эффективные программные решения классических	14.01	
1,,	- / ·	задач с помощью собственных блоков.	11	
PA3	ЛЕЛ V.	АЛГОРИТМЫ УПРАВЛЕНИЯ И ЗАДАЧИ ДЛЯ РОБОТА		
18.	18.	Применение блока «Переключатель». Практическое	21.01	
		задание: «Собачка» С использованием 1 блока		
		Переключатель.		
19.	19.	Применение и использование регуляторов	28.01	
-, .	-, .	робототехнике.		
20.	20.	Изучение ультразвукового датчика и его режимы	04.02	
_ ,,		работы. Использование и программирование	·	
		ультразвукового датчика в учебных соревнованиях		
		«Лабиринт».		
21.	21.	Знакомство с датчиком Цвета, его настройками и	11.02	
		принципом работы. Написание программы для		
		определения цвета объекта. Применение блоков из		
		палитры операции с данными.		
22.	22.	Правила и поле для соревнований «Кегельринг».	18.02	
		Сборка робота. Программа с применением датчиков		
		Ультразвука и Цвета для участия в учебных		
		соревнованиях.		
23.	23.	Дополнение и усовершенствования робота. Программа	25.02	
		с применением датчиков Ультразвука и Цвета для		
		участия в учебных соревнованиях.		
24.	24.	Применение релейного регулятора. Программирование	04.03	
		и управление роботов с помощью датчика цвета для		
		выполнения задания «Езда по линии» на основе		
		простейшего релейного регулятора.		
25.	25.	Применение релейного регулятора. Программирование	11.03	
		и управление роботов с помощью датчика цвета для		
		выполнения задания «Езда по линии» на основе		
		простейшего релейного регулятора.		
26.	26.	Применение пропорционального регулятора.	18.03	
		Выполнение задания «Езда по линии» с помощью 2		
		датчика Цвета на основе П-регулятора.		
27.	27.	Знакомство с принципом работы Гироскопического	01.04	· <u> </u>
		Датчика. Программирование «Упрямого робота» на		
		основе пропорционального регулятора.		
28.	28.	Применение пропорционально-дифференциального	08.04	
		регулятора.		
29.	29.	Выполнение задания «Езда по линии» с помощью 2	15.04	
		датчика цвета на основе П-регулятора.		
			·	

30.	30.	Знакомство с принципом работы Гироскопического датчика. Программирование «Упрямого робота» на	22.04	
		основе пропорционального регулятора.		
31.	31.	Применение пропорционального - дифференциального регулятора.	29.04	
32.	32.	Выполнение задания «Езда по линии» с помощью датчика цвета на основе ПД-регулятора.	06.05	
33.	33.	Выполнение задания «Езда по лини» с помощью 2 датчиков Цвета на основе ПД-регулятора	13.05	
34.	34.	Закрепление полученных знаний путем конструирования собственных моделей и написания программ.	20.05	